Solving Nonlinear Problems with Abaqus

Solving Nonlinear Problems with Abaqus is an extensive course which provides practical information to perform nonlinear FEA analysis in Abaqus. This course takes step-by-step approach and presents from introductory to advanced technique in a gradual way. In a real life problem, there are many nonlinearities present in a system. Solving such nonlinear problems is a really challenging task. This course begins with simple problems having a single non-linearity and presents the appropriate techniques to solve it. Later in the course more complex problems are presented. The course is divided in two parts:

- Part 1: Basics of Nonlinear Analysis
- Part 2: Solving Contact Problems

Part 1: Basics of Nonlinear Analysis

1. Introduction

In this section, an overview of sources of nonlinearities in structures is given. Furthermore solution algorithms for nonlinear problems are described in detail. The objective of this section is to give an overview of the physics involved in nonlinear problems and how to choose the best solution strategy. Topics covered are as follow:

- Linear vs Nonlinear response
- Sources of nonlinearities
 1. Geometric nonlinearity
 I. Large strain
 II. Small strains but large displacements and/or rotations
 III. Snap-Through
 IV. Buckling
 2. Material nonlinearity
 I. Nonlinear elasticity
 II. Plasticity
 3. Force nonlinearity
 4. Boundary nonlinearity
- Solution algorithms
 1. Newton’s method
 2. Arc-Length method

2. Exercises

This course adopts Problem-Based Learning approach. It consists of tutorials providing intensive instructions to perform analysis of nonlinear problems. Details of topics covered in exercises is given below.
Exercise 1

- Analyzing a fixed beam
- How to determine if nonlinear analysis is required
- Turning on the NLgeom option
- Understanding Job monitor for a nonlinear analysis

Exercise 2

- Analyzing a beam pinned on both ends
- When does geometric nonlinearity has significant influence on solution even for small deformation
- Plotting membrane forces
- Plotting reaction forces in axial direction at supports

Non-Linear Solution

Linear Solution
Exercise 3

- Analyzing a simply supported beam
- Influence of boundary conditions on the geometric nonlinearity
- Influence of boundary conditions on membrane forces
- Plotting membrane forces

Exercise 4: Deflection of a plate

- Analyzing a plate
- Influence of geometric nonlinearity on solution for small strain problem
- Plotting the axial strain
- Investigating membrane effects
- Symbol plot of reaction forces
Exercise 5
- Analyzing a two bar truss
- Simulating snap through using General static analysis
- Solving small strain, large rotation problem
- Obtaining solution using displacement control
- Comparing analytical and numerical solution

Exercise 6:
- Analyzing a two bar truss using force-control
- Investigating the snap-through
- Comparing displacement-control and force-control results
- Introducing stabilization

Displacement-control analysis

The dotted line represents the load-control analysis and solid line represents the displacement-control analysis.
Exercise 7

- Analyzing a circular arch
- Simulating snap-through using Riks method
- Modeling arch using beam elements
- Specifying analysis stopping criteria
- Understanding Job monitor for a Riks analysis
- Comparing job monitor and LPF graph

Exercise 8

- Analyzing a circular arch modeled using shell elements
- Simulating snap-through using Riks method
- Specifying analysis stopping criteria
- How to choose magnitude of LPF for stopping criteria
- Requesting Pressure loads as output
Exercise 9
- Analyzing a cylindrical roof
- Simulating snap-through behavior
- Comparison of results using
 - Riks analysis
 - General static Analysis

Pressure versus the displacement of center node

The dotted line represents the static, general analysis and solid line represents the Riks analysis.

Exercise 10
- Analyze a structure undergoing localized buckling
- Defining MPC constraint
- Introducing stabilization
Exercise 11
- Performing buckling analysis of a column
- Estimating buckling modes using eigenvalue analysis
- Investigating the post-buckling response using General static analysis
- Seeding the imperfection by introducing trigger load

Exercise 12
- Performing buckling analysis of a thin plate
- Estimating buckling modes using eigenvalue analysis
- Investigating the post-buckling response using General static analysis
- Seeding the imperfection by introducing trigger load
Solving Nonlinear Problems with Abaqus

Third mode

Fourth mode

Load-Displacement analysis

Load versus out of plane displacement

Effect of imperfection magnitude on response
Exercise 13
- Performing buckling analysis of a bracket
- Understanding negative eigenvalues
- Seeding the imperfection using eigenmode shape
- Importance of increment size to capture the buckling response
- Investigating the effect of imperfection magnitude on response of the structure

![Bucked shape](image1)

![First and second mode](image2)

![Force versus out of plane displacement of center node](image3)

![Effect of imperfection magnitude on response](image4)

Exercise 14
- Performing buckling analysis of a cylindrical shell subjected to compressive axial load
- Using Lanczos eigensolver
- Using pairs of repeated eigenmodes to introduce imperfection
- Investigating the post-buckling response using Riks procedure
- Seeding the imperfection using multiple eigenmodes

![Image of cylindrical shell](image5)
First three eigenmodes

Response of the cylinder when one eigenmode is used to seed the imperfection.

Response of the cylinder when two eigenmodes are used to seed the imperfection.

Response of the cylinder when first fifteen eigenmodes are used to seed the imperfection.

Comparison of response when different combinations of eigenmodes are used to seed the imperfection.

Exercise 15
- Specifying follower and non-follower forces
- Comparing solution for follower and non-follower force

Follower force

Non-Follower force
Exercise 16

- Simulating rubber disc subjected to pressure loading
- Plotting thickness for the shell elements
- Plotting the thickness strain
- Visualizing the shell thickness on screen

![Different stages of disc bulging due to pressure loading](image)

![Visualizing the shell thickness](image)

Exercise 17

- Analyze a yoke undergoing plastic deformation
- Applying a pressure load with a sinusoidal distribution
- Defining plasticity from given stress-strain curve
- Plotting the equivalent plastic strain

![Thickness strain at two different locations on the disc](image)
Exercise 18

- Analyzing a test rod subjected to cyclic loading
- Applying a cyclic load
- Performing analysis assuming kinematic hardening
- Performing analysis assuming isotropic hardening
- Accumulated strain measures: PEEQ vs PEMAG

Variation of load

Isotropic hardening

Kinematic hardening
Exercise 19

- Analyzing a bar subjected to a cyclic temperature load
- Applying a cyclic temperature load
- Investigating the residual stresses
- Temperature dependent plasticity model

Evolution of temperature load with time

Evolution of strains in the part

Exercise 20

- Analyzing a brake disc subjected to cyclic temperature load
- Performing sequential stress analysis
- Cyclic loading due to repeated braking
- Importing temperature history
- Temperature dependent kinematic hardening model
- Investigating the residual stresses
- Temperature dependent material model
- Transforming results to cylindrical coordinate system
- Plotting circumferential stress against circumferential plastic strain
The temperature history for a node on the disc surface for one brake cycle.

Workflow of this sequential approach

Residual plastic strain on the disc surface

Contour plot of the circumferential stresses

A graph of the circumferential stresses against different measures of the strain in circumferential direction for the repeated braking
Exercise 21

- Simulate bulging of a rubber disc due to applied pressure
- Defining a Mooney-Rivlin hyperelastic model
- Plotting the history of thickness change of the disc
- Plotting the history of thickness strain

![Graph of S. Mises stress](image)

Graphs:

- **Left:** The thickness of the disc at the centerline
- **Right:** Thickness strain at the center of the disc versus the displacement of the center node
Part 2: Solving Contact Problems

1. Introduction

Contact problems are considered to be highly nonlinear and are one of the most difficult ones to solve. This section aims to provide practical information to perform contact analysis in Abaqus. In this section, the necessary concepts to perform a contact analysis are explained with detail. Furthermore the solution algorithm used for solving contact problems is described. Topics covered are as follow:

- Contact interaction
- Contact property models
 1. Hard Contact
 2. Soft Contact
 3. Friction models
- Contact constraint enforcement methods
 1. The direct method
 2. The penalty method
 3. The augmented Lagrange method
- Relative sliding of surfaces
- Slave and master surfaces
- Discretization of contact pair surfaces
- General contact and Contact pairs
- Solution algorithm for contact problems
- Diagnosing convergence difficulties and taking the corrective action

2. Exercises

A large number of exercises are presented providing intensive instructions to perform analysis of contact problems. Details of topics covered in exercises are given below. During such analysis it is very common to face convergence difficulties. Quite a few tutorials are devoted to diagnose such difficulties and take the corrective action.

Exercise 1

- Analyzing an elastic cylindrical indenter contacting a rigid surface
- Defining a contact pair interaction
- Plotting contact pressure along a path
Exercise 2

- Simulation of a fuse being pushed into its holder
- Using boundary conditions to establish contact
- Extruding and mirroring simulation results

Initial positions of components

Different stages of fuse moving into holder
Exercise 3

- Simulation of a fuse placement into its holder using interference resolution technique
- Resolving interference to establish contact

![Initial positions of components](image)

Exercise 4

- Performing the stress analysis of shaft-hub assembly coupled by interference fit.
- Obtaining a solution by interference resolution
- Obtaining a solution by thermal expansion and later contraction of hub
- Comparing solution by interference resolution vs. solution by thermal expansion
- Maximum torque that surfaces in contact can transmit

![Stress analysis results](image)
Exercise 5

- Performing the stress analysis of shaft-hub assembly coupled by conical rings
- Choosing a master surface among two deformable surfaces.
- Diagnosing the error messages with Job Diagnostics dialog box
- Invoking unsymmetric solver
Exercise 6

- Performing the stress analysis of a piston ring fitted inside a rigid housing.
- Using interference resolution capability to resolve initial overclosure.
- Comparing the results obtained with small sliding vs. finite sliding.
- Introducing the contact stabilization to alleviate the convergence difficulties.
- Improving refinement level of displayed results.
- CSTATUS output variable.

![Contour plot of COPEN(contact opening)](image)

Contact stress along the boundary of the ring

Exercise 7

- Performing the stress analysis of a piston ring fitted inside a rigid housing by using multi-step approach instead of interference resolution to solve the contact problem.

![Max: +2.269e+008](image)
Exercise 8
- Simulation of a reciprocating plunger
- Slip-rate dependent friction model
- Exponential decay friction model
- Rough friction
- Stick-slip behavior

Force due to frictional stress at the contact interface

Exponential decay friction model

Exercise 9
- Simulating contact stresses at the interface of a spindle-holder assembly
- Smoothing contact surfaces to overcome the contact stress inaccuracy arising due to faceted surface geometry

Stress inaccuracy arising due to faceted surface geometry

Corrected solution obtained by smoothing contact surfaces
Exercise 10

- Welding a shell part to a solid part using
 1) Tied contact
 2) Tie constraint
- Slave node adjustment to establish contact
- STRAINFREE output variable
- Diagnosing the error messages with Job Monitor dialog box

Comparing the ‘tied contact’ to ‘tie constraint’

Comparing the strain-free adjustments to initial positions
Exercise 11

- Using tied contact to “weld” two shell parts together
- Using shell offset to avoid overlapping
- Using query tool to determine SPOS/SNEG faces of shell

Exercise 12

- Defining contact between the surfaces of solid and shell parts
- Accounting for shell thickness
- Using unsymmetric solver for better convergence
- Plotting surface normal to determine SPOS/SNEG faces of shell
- Choosing a master surface among two deformable surfaces.
Exercise 13

- Analyzing stresses in a VAM TOP connector due to internal fluid pressure
- Pressure penetration loading
- PPRESS output variable

Exercise 14

- Analysis of an o-ring seal under the pressure of a fluid
- Pressure penetration interaction
- Diagnosing the convergence problems
Exercise 15

- Analysis of an u-cup seal under the pressure of a fluid
- Node-to-surface discretization for interference resolution
- Diagnosing the cause of error message using Job Diagnostics dialog box
- Introducing the contact stabilization to alleviate the convergence difficulties

Axisymmetric model

Von Mises stresses at the end of analysis

Comparing the energy dissipation due to stabilization (ALLSD) to the elastic strain energy of the model (ALLSE)

The contact pressure distribution
Exercise 16
- Simulation of a hyperelastic door seal
- Defining self contact
- Detecting chattering in the contact using Job Diagnostics dialog box
- Understanding “Negative eigenvalues” error message
- Introducing the contact stabilization
- Fraction of damping at end of step

Exercise 17
- Contact analysis of the door seal using “soft” contact
- Defining the following softened contact models.
 I. Exponential
 II. Linear
 III. Tabular
Exercise 18

- Simulating a jounce bumper.
- Defining self contact
- Using Line Search algorithm to prevent divergence

Step: Step 2
Increment 196: Step Time = 1.000
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +1.000e+00

Exercise 19

- Performing the heat transfer analysis of a bolted flange joint
- Defining thermal contact conductance as a function of contact pressure
- Finding contact pairs using contact detection tool

NT11

+1.1e+02
+1.0e+02
+9.5e+01
+8.7e+01
+8.0e+01
+7.2e+01
+6.4e+01
+5.7e+01
+4.9e+01
+4.2e+01
+3.4e+01
+2.6e+01
+1.9e+01

CPRESS

+5.3e+08
+2.0e+08
+1.8e+08
+1.7e+08
+1.5e+08
+1.3e+08
+1.2e+08
+1.0e+08
+8.3e+07
+6.7e+07
+5.0e+07
+3.3e+07
+1.7e+07
+0.0e+00
Exercise 20

- Thermo-mechanical simulation of a disc brake system
- Defining temperature dependent coefficient of friction
- Defining thermal contact conductance is a function of gap clearance
- Defining an interaction to model heat transfer due to convection
- Specifying heat generation and its distribution
- Modifying solution controls to reduce computational cost

Exercise 21

- Defining contact interaction for a punch-blank-die assembly
- Using general contact approach to define interaction
- Comparing contact pressure plots for general contact and contact pairs approach

Comparison of contact pressure distribution for general contact and contact pairs approach
Exercise 22

- Simulation of the upsetting of a tubular rivet
- Visualizing default master-slave assignment in general contact
- Overriding the default master-slave assignment in general contact
- Automatic surface smoothing in general contact
- Comparing contact normal force for the general contact approach with contact pairs approach

Exercise 23

- Simulating a jounce bumper.
- Defining a contact initialization to resolve initial overclosures in a general contact interaction
Exercise 24
- Simulating the angular movement of the shaft of a boot seal
- Defining a contact pairs and a general contact interaction together in a model

Exercise 25
- Performing the stress analysis of a door seal.
- Introducing contact stabilization in a general contact interaction
- Applying stabilization in tangential direction.
- Reversing the orientation of individual faces during the surface definition
Exercise 26

- Simulation of the bending of a staple
- Simulating the quasi-static problem using both Abaqus/Standard and Abaqus/Explicit
- Using the “softened” contact to overcome the convergence problems

Exercise 27

- Simulating the deep drawing of a cup using both Abaqus/Standard and Abaqus/Explicit.
- Monitoring the thickness of shell elements
- Considering thickness changes in a general contact interaction
Exercise 28
- Simulating the v-bending of a sheet metal blank
- Compare the results obtained with contact pair approach and general contact approach
- Rendering thickness of shell elements
- CTHICK output variable
- Contact controls to eliminate thickness reductions

Exercise 29
- Bending of an extrusion under quasi-static loading conditions
- Handling of T-intersections in shells in contact pair interactions
- Penalty vs Kinematic contact enforcement method
Exercise 30

- Simulating the metal cutting using the contact pair approach
- Element deletion functionality to model erosion due to material failure
- Using a node-based surface as slave to model surface erosion
- STATUS output variable to exclude failed elements
- ALE adaptive meshing

Results obtained with ALE adaptive meshing

Results obtained without ALE adaptive meshing

Distribution of von Mises stresses in the undeformed shape at the end of the simulation.
Exercise 31

- Simulating the erosion of a plate due to impacting projectile
- Creating a surface containing interior faces of an element set
- Surface erosion using element-based surface
- Editing the input file